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Abstract. We show how one can express the solution to a certain type of partial differential
equation (PDE) in the form of an infinite operator series acting on the solution to another PDE of
the same form. This technique can be thought of as a perturbation method in the sense that the
solution to a difficult problem is written in terms of a solution to an analytically tractable problem
or ‘reference’ problem. For diffusion problems, where the solution must have a constant integral
with respect to the spatial coordinates (probability conservation), this method is especially useful
because the infinite operator series conserves probability term by term. Two example diffusion
problems are solved using this method to illustrate the concepts.

1. Introduction

During previous experimental work dealing with colloidal systems [1], we found that we
needed an approximate analytical solution of the mutual diffusion equation describing two
hydrodynamically interacting spheres suspended in an aqueous medium. One incorporates
hydrodynamic interactions into the free diffusion equation by using a tensor diffusivity in
place of the usual scalar diffusivity, and the resulting equation is difficult to solve analytically.
In [1], we found an analytic solution to this equation in the form of an infinite operator series
acting on a solution to the free diffusion equation, but we only calculated the first few terms in
the series. In this paper, we give the full operator series, and we show that this technique is not
just limited to diffusion equations, but can be applied to an entire class of partial differential
equations (PDEs). This technique can be thought of as a perturbation method in the sense that
the solution to a difficult problem is written in terms of a solution to an analytically tractable
problem or ‘reference’ problem.

The organization of the paper is as follows. In section 2, we derive the perturbation theory,
and show that it has certain desirable properties when used in the context of diffusion problems.
In section 3, we illustrate the concepts through two examples, and in section 4, we draw some
conclusions and give ideas for future work.

2. Perturbation theory

Consider PDEs of the form

∂

∂t
u(r, t) = Lu(r, t) (1)
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with initial condition

u(r, 0) = f (r) (2)

whereL is a linear partial differential operator which depends only on the coordinatesr

and not ont , andf (r) is any function. For example, the mutual diffusion equation for two
hydrodynamically interacting spheres with separation vectorr is of the form (1) ifu(r, t)
denotes the probability distribution of the separation coordinater at timet , and one puts [2]

L = ∇ ·D(r) · ∇ (3)

whereD(r), the mutual diffusion tensor, is a function of the separation vector. Of course, in
the free diffusion case, this reduces toL = 2D0∇2, whereD0 is the diffusivity of a single
particle.

In the spirit of perturbation theory, we would like to write the solution to equation (1) in
terms of a solution to an equation of the same form but with a different operatorL̃ (a ‘reference’
system). For instance, in the example given above, we could choose our reference system to be
the free diffusion system and write the solution to the hydrodynamically interacting diffusion
problem in terms of this reference solution. In the next section, we show how this can be done
using an operator formalism.

2.1. Operator series

The formal solution to the problem of interest (equation (1)) is given by

u(r, t) = eLt f (r) (4)

and the formal solution to the ‘reference problem’

∂

∂t
ũ(r, t) = L̃ũ(r, t) (5)

ũ(r, 0) = u(r, 0) = f (r) (6)

is given by

ũ(r, t) = eL̃t f (r). (7)

Note that the operatorsL and L̃ do not necessarily commute, and the complexity of the
manipulations that follow stem from this fact.

Let us write the exponential on the right-hand side of equation (4) as e(L−L̃)t+L̃t , and expand
it as follows [3]:

e(L−L̃)t+L̃t = eL̃t +
∫ t

0
eL(t−s)(L− L̃)eL̃s ds. (8)

If we apply the operator (8) tof (r), and use equation (7), we can write the solution to the
original problem in terms of the ‘reference’ solutionũ(r, t) as follows:

u(r, t) = ũ(r, t) +
∫ t

0
eL(t−s)(L− L̃)ũ(r, s)ds. (9)

If one expands̃u(r, s) in a Taylor series abouts = t (using equation (5) to replace each
time derivative withL̃), substitutes this in equation (9), and formally expands the exponential
in equation (9) as well, then, after integrating overs and collecting terms of the same power
of t , one finds that

u(r, t) =
∞∑
n=0

Anũ(r, t) (10)
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whereA0 ≡ 1, and the operatorsAn for n > 1 are given by

An =
n−1∑
k=0

(−1)ktn

k!(n− 1− k)!nL
n−k−1(L− L̃)L̃k. (11)

A recursion relation exists among theAn, given by

An+1 = t

n + 1
(LAn − AnL̃) (12)

which can be proven directly using equation (11).
Let us defineu(n)(r, t) ≡ Anũ(r, t). Using equations (12) and (5), we see that

u(n+1)(r, t) = t

n + 1

(
Lu(n)(r, t)− An ∂

∂t
ũ(r, t)

)
. (13)

Using the relation

∂

∂t
(Anũ) = An ∂ũ

∂t
+
n

t
Anũ (14)

we can write equation (13) as

u(n+1)(r, t) = 1

n + 1

[
n + t

(
L− ∂

∂t

)]
u(n)(r, t). (15)

Thus, the solution to equation (1) can be written as a series of functions as follows:

u(r, t) =
∞∑
n=0

u(n)(r, t) (16)

whereu(0)(r, t) ≡ ũ(r, t), and each successiveu(n) is given by equation (15). Note that one
may also write equation (16), in a purely formal way, as

u(r, t) =
∞∑
n=0

(
n + t (L− ∂

∂t
)− 1

n

)
ũ(r, t) (17)

where the symbol ( ) denotes a binomial coefficient.
Thus, we have written the solution to equation (1) in terms of the solution to the reference

problem equation (5). If one can choose an analytically soluble reference problem that is in
some sense ‘close’ enough to the problem of interest, then one hopes that the perturbation
solution (equation (16)) will converge rapidly. In the next section, we show that theu(n) have
properties advantageous for solving diffusion problems.

2.2. Conservation of probability

If one wants to use this technique to solve unbounded diffusion problems (whereu(r, t)

is a probability density), it would be desirable if the integral overr of any truncation of
the perturbation solution (equation (16)) remained unity. If that were the case, one would
not have to worry about probability conservation when adding successive termsu(n). Since∫
u(0) = ∫

ũ = 1 (assuming our reference solutionũ(r, t) is a probability density), this
requires that

∫
u(n) = 0 for all n > 1.

To prove this, integrate both sides of equation (15) over the spatial coordinatesr to obtain∫
u(n+1) = n

n + 1

∫
u(n) +

t

n + 1

∫
Lu(n) − t

n + 1

∂

∂t

∫
u(n). (18)

Let us make an argument based on induction, and assume that
∫
u(n) = 0 for somen > 1.

With this assumption, we see that the first and last terms on the right-hand side of equation (18)
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are identically zero for that particularn. For diffusion problems,L is the divergence of another
operator, and thus, after an integration by parts, and assuming thatu(r, t) and its derivatives
with respect tor go to zero at infinity, we get

∫
Lu(n) = 0, which means that the entire right-

hand side of equation (18) vanishes. Thus,
∫
u(n) = 0 implies that

∫
u(n+1) = 0. To complete

the induction argument, it remains to be shown that
∫
u(1) = 0. To see this, substituten = 0

in equation (18), and use the facts that
∫
Lu(0) = 0 and

∫
u(0) = 1.

3. Two example problems

In this section, we apply the procedure developed in the previous section to two example
diffusion problems in order to demonstrate the technique’s utility. The first example is a
physically reasonable diffusion problem involving two particles interacting hydrodynamically.
The second problem was constructed to have convenient mathematical properties, which will
be discussed later.

3.1. Physically reasonable problem

We will solve a one-dimensional diffusion equation describing two particles initially separated
by a surface to surface distancex = 5, characterized by a mutual diffusivityD(x) that varies
with the separation distance in a way that is characteristic of hydrodynamic interactions, namely

D(x) = x

x + 2
. (19)

This mutual diffusivity vanishes at contact (x = 0), increases linearly for small separations, and
algebraically approaches a constant asx →∞, all consistent with the behaviour of the mutual
diffusivity of a pair of hydrodynamically interacting spheres in three dimensions [4]. This
expression for the diffusivity gives negative, and hence unphysical, values for−2 6 x < 0,
but this is outside the domain of the problem, because as discussed below, we do not allow
the particles to overlap, and so there is no particle density forx < 0. The PDE describing the
time evolution of the probability distributionu(x, t) of the separation distancex is given by:

∂u

∂t
= ∂

∂x

( x

x + 2

) ∂u
∂x

(20)

with the initial condition

u(x, 0) = δ(x − 5) (21)

whereδ(x) is the Dirac delta function.
In order to compare the approximate solutions with the exact solution, equation (20) was

solved numerically using a Crank–Nicholson method [5]. We imposed a no flux boundary
condition atx = 0 to prevent the particles from overlapping. Unfortunately, the perturbation
method cannot, in general, handle boundary conditions, and so our approximate solution will
develop a probability density in the unphysical regionx < 0. However, for the timescale of
interest here, the boundary condition does not affect the overall solution appreciably, because
there is a very small probability of the particles diffusing that closely together.

We choose, as our reference system, a pair of freely diffusing particles with mutual
diffusivity D = 1 and initial separationx = 5, which results in the reference equation

∂ũ

∂t
= ∂2ũ

∂x2
(22)

ũ(x, 0) = δ(x − 5) (23)
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Figure 1. The pair probability distribution att = 1
for an initial separation ofx = 5 for both the freely
diffusing (reference) and hydrodynamically interacting
(exact) systems.

Figure 2. The n = 1, 2, 3 terms in the perturbation
solution (equation (16)) for the example problem given
in the text.

with solution

ũ(x, t) = u(0)(x, t) = 1√
4πt

exp[−(x − 5)2/(4t)]. (24)

The reference solution along with the exact solution att = 1 is shown in figure 1. The
presence of the ‘hydrodynamic interactions’ has caused the particles to not stray as far from
their initial positions as in the freely diffusing case, and has led to an asymmetry in the
probability distribution.

We used the software packageMathematica [6] and equations (15) and (24) to analytically
compute the correction termsu(1) throughu(10)†, where the operatorL in equation (15) is given
by

L = ∂

∂x

( x

x + 2

) ∂

∂x
. (25)

Calculating the analytic form ofu(10)(x, t) required approximately 20 min on a computer
equipped with a Pentium II microprocessor running at 266 MHz. In contrast, the calculation
of u(5)(x, t) required 10 s. The termsu(1), u(2), andu(3) are shown graphically in figure 2 at
t = 1. The fourth- and higher-order terms continue to diminish with increasing order, with the
amplitude of the oscillations decreasing to the point thatu(10)(x, 1) is barely distinguishable
from zero on the scale of figure 2. Figure 3 shows the difference between the exact solution
and the zeroth-, first-, second-, and third-order approximate solutions att = 1. Note that the
difference between the approximate and exact solutions diminishes as more terms are kept.
This trend continues through the higher-order solutions, at least until the tenth order fort = 1.

In order to quantitatively compare the exact solution with the approximate solutions, we
compute theL1 norm of the difference between the exact and approximate solutions, given by

L1(N, t) ≡
∫ ∞

0

∣∣∣∣u(x, t)− N∑
n=0

u(n)(x, t)

∣∣∣∣ dx. (26)

† u(1)(x, t) is given by

u(1)(x, t) =
(

1

x + 2
− (x − 5)2

2t (x + 2)
− x − 5

(x + 2)2

)
u(0)(x, t)

whereu(0)(x, t) is given by equation (24). The higher-order terms quickly become very algebraically complicated,
and will not be given here.
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Figure 3. The difference between the exact solution and
the approximate analytical solution obtained by keeping
successively more terms in equation (16).

Figure 4. The L1 norm L1(N, t) of the difference
between the exact and approximate solutions as a function
of the number of termsN used in equation (16).

This quantity will approach zero as
∑
u(n)(x, t) approaches the exact solutionu(x, t). Figure 4

showsL1(N, t) for t = 1, 2 andN = 0–10. Fort = 1, the absolute difference between
the approximate and exact solutions decreases with increasingN up to at least tenth order.
However, fort = 2, the difference initially decreases with increasingN , then increases for
N > 6, as is characteristic of an asymptotic series.

3.2. Mathematically convenient example

Let us again consider a one-dimensional diffusion problem. As we have said before, the
perturbation method cannot, in general, handle boundary conditions. However, if the diffusivity
D(x) has the property thatD(x) = D(−x), then we can construct a perturbation solution that
satisfies a no flux boundary condition atx = 0. For, ifD(x) has this symmetry property,
then the operatorL = ∂xD(x)∂x is invariant under reflection aboutx = 0. Therefore, if
u(x, t) is a solution to the PDE, thenu(−x, t) is also a solution, andu(x, t) + u(−x, t) is
the solution that satisfies the no flux boundary condition atx = 0. If we choose a reference
solution of this form, then because of the symmetry ofL, theu(n)(x, t) generated by repeated
application of equation (15) will also satisfy the no flux boundary condition atx = 0, and thus
the perturbation solution (equation (16)) will satisfy the no flux boundary condition†.

We choose aD(x) similar to equation (19), but which is symmetric aboutx = 0, namely‡

D(x) = x2 + 1

x2 + 6
. (27)

We start with a particle separation ofx = 2, and thus the PDE describing the time evolution
of the probability distributionu(x, t) of the separation distancex is given by:

∂u

∂t
= ∂

∂x

(
x2 + 1

x2 + 6

)
∂u

∂x
(28)

u(x, 0) = δ(x − 2) (29)
∂

∂x
u(0, t) = 0 (30)

whereδ(x) is the Dirac delta function.
We choose, as our reference system, a pair of freely diffusing particles with mutual

diffusivityD = 0.5, which seems a natural choice, since the initial particle separation isx = 2,

† We would like to thank one of the referees of this paper for pointing out this fact.
‡ This form ofD(x) was suggested by a referee of this paper.
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Figure 5. The pair probability distribution att = 1 for
an initial separation ofx = 2 for both the freely diffusing
(reference) and interacting (exact) systems.

Figure 6. The n = 1, 4, 8 terms in the perturbation
solution (equation (16)) for the example problem given
in the text.

and the diffusivity (equation (27)) at this separation is 0.5. Thus, the reference equation is
given by

∂ũ

∂t
= 1

2

∂2ũ

∂x2
(31)

ũ(x, 0) = δ(x − 2) (32)
∂

∂x
ũ(0, t) = 0 (33)

with solution

ũ(x, t) = u(0)(x, t) = 1√
2πt

(exp[−(x − 2)2/(2t)] + exp[−(x + 2)2/(2t)]). (34)

As before, equation (28) was solved numerically using a Crank–Nicholson method [5].
The reference solution along with the exact solution att = 1 is shown in figure 5.

We used the software packageMathematica [6] and equations (15) and (34) to analytically
compute the correction termsu(1) throughu(8), where the operatorL in equation (15) is given
by

L = ∂

∂x

(
x2 + 1

x2 + 6

)
∂

∂x
. (35)

The ninth- and higher-order terms were not calculated due to long computation times. The
functionsu(1), u(4), andu(8) are shown in figure 6 att = 1, and figure 7 shows the difference
between the approximate and exact solutions att = 1 for the zeroth-, first-, fourth-, and
eighth-order approximations.

Figure 8 showsL1(N, t) (equation (26)) fort = 0.2, 0.5, 1, 2 andN = 0–8. For
t = 0.2, 0.5, 1, the absolute difference between the approximate and exact solutions decreases
with increasingN up to at least eighth order. In contrast, fort = 2, the series solution rapidly
diverges from the exact solution after the second-order term, which is again characteristic of an
asymptotic series. These results suggest that, as in the first example, the perturbation method
works better for smaller times.

4. Conclusions

In this paper, we have presented a technique for writing the solution to a certain type of PDE
in terms of the solution to another PDE of the same type. We see that this method is useful
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Figure 7. The difference between the exact solution and
the approximate analytical solution obtained by keeping
successively more terms in equation (16).

Figure 8. The L1 norm L1(N, t) of the difference
between the exact and approximate solutions as a function
of the number of termsN used in equation (16).

as a perturbation technique, if one can find a PDE ‘close’ to the PDE of interest, for which an
analytic solution can be found. Then, all one must do is successively apply equation (15) to
the reference solution in order to generate a successively more accurate analytic solution to the
original problem. Due to the complexity of numerical solutions of PDEs in higher numbers
of dimensions, the advantages of having an analytic solution as opposed to a numerical one
become more apparent as the number of spatial dimensions increases.

Some further work remains to be done, however. First of all, it remains to be determined
under which conditions the perturbation solution (equation (16)) actually converges. Figures 4
and 8 seem to indicate that in the two examples given, the series of approximate solutions
approaches the exact solution more rapidly for smallert , and is asymptotic for some, if not
all, values oft . This behaviour could stem from the fact that the reference solutions in the two
example problems both have essential singularities att = 0, possibly limiting the radius of
convergence in the time domain. Perhaps equation (16) can be resummed via Padé summation
to yield more useful answers when the series is asymptotic. Also, the current scheme does not
allow one to incorporate boundary conditions (except in very special cases, as in the second
example problem), and so it only works, in general, with unbounded problems. We present
this result in the hopes that other workers will also find it useful and possibly expand upon it.
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